Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sustain Cities Soc ; 96: 104712, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-20232991

RESUMEN

Most crowding measures in public transportation are usually aggregated at a service level. This type of aggregation does not help to analyze microscopic behavior such as exposure risk to viruses. To bridge such a gap, our paper proposes four novel crowding measures that might be well suited to proxy virus exposure risk at public transport. In addition, we conduct a case study in Santiago, Chile, using smart card data of the buses system to compute the proposed measures for three different and relevant periods of the COVID-19 pandemic: before, during, and after Santiago's lockdown. We find that the governmental policies diminished public transport crowding considerably for the lockdown phase. The average exposure time when social distancing is not possible passes from 6.39 min before lockdown to 0.03 min during the lockdown, while the average number of encountered persons passes from 43.33 to 5.89. We shed light on how the pandemic impacts differ across various population groups in society. Our findings suggest that poorer municipalities returned faster to crowding levels similar to those before the pandemic.

2.
Stoch Environ Res Risk Assess ; : 1-15, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2244917

RESUMEN

Machine learning (ML) has proved to be a prominent study field while solving complex real-world problems. The whole globe has suffered and continues suffering from Coronavirus disease 2019 (COVID-19), and its projections need to be forecasted. In this article, we propose and derive an autoregressive modeling framework based on ML and statistical methods to predict confirmed cases of COVID-19 in the South Asian Association for Regional Cooperation (SAARC) countries. Automatic forecasting models based on autoregressive integrated moving average (ARIMA) and Prophet time series structures, as well as extreme gradient boosting, generalized linear model elastic net (GLMNet), and random forest ML techniques, are introduced and applied to COVID-19 data from the SAARC countries. Different forecasting models are compared by means of selection criteria. By using evaluation metrics, the best and suitable models are selected. Results prove that the ARIMA model is found to be suitable and ideal for forecasting confirmed infected cases of COVID-19 in these countries. For the confirmed cases in Afghanistan, Bangladesh, India, Maldives, and Sri Lanka, the ARIMA model is superior to the other models. In Bhutan, the Prophet time series model is appropriate for predicting such cases. The GLMNet model is more accurate than other time-series models for Nepal and Pakistan. The random forest model is excluded from forecasting because of its poor fit.

3.
Fractal and Fractional ; 7(2):169.0, 2023.
Artículo en Inglés | MDPI | ID: covidwho-2232374

RESUMEN

Covariate-related response variables that are measured on the unit interval frequently arise in diverse studies when index and proportion data are of interest. A regression on the mean is commonly used to model this relationship. Instead of relying on the mean, which is sensitive to atypical data and less general, we can estimate such a relation using fractile regression. A fractile is a point on a probability density curve such that the area under the curve between that point and the origin is equal to a specified fraction. Fractile or quantile regression modeling has been considered for some statistical distributions. Our objective in the present article is to formulate a novel quantile regression model which is based on a parametric distribution. Our fractile regression is developed reparameterizing the initial distribution. Then, we introduce a functional form based on regression through a link function. The main features of the new distribution, as well as the density, distribution, and quantile functions, are obtained. We consider a brand-new distribution to model the fractiles of a continuous dependent variable (response) bounded to the interval (0, 1). We discuss an R package with random number generators and functions for probability density, cumulative distribution, and quantile, in addition to estimation and model checking. Instead of the original distribution-free quantile regression, parametric fractile regression has lately been employed in several investigations. We use the R package to fit the model and apply it to two case studies using COVID-19 and medical data from Brazil and the United States for illustration.

4.
Comput Biol Med ; 154: 106583, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2210093

RESUMEN

BACKGROUND: During the COVID-19 pandemic, there is a global demand for intelligent health surveillance and diagnosis systems for patients with critical conditions, particularly those with severe heart diseases. Sophisticated measurement tools are used in hospitals worldwide to identify serious heart conditions. However, these tools need the face-to-face involvement of healthcare experts to identify cardiac problems. OBJECTIVE: To design and implement an intelligent health monitoring and diagnosis system for critical cardiac arrhythmia COVID-19 patients. METHODOLOGY: We use artificial intelligence tools divided into two parts: (i) IoT-based health monitoring; and (ii) fuzzy logic-based medical diagnosis. The intelligent diagnosis of heart conditions and IoT-based health surveillance by doctors is offered to critical COVID-19 patients or isolated in remote locations. Sensors, cloud storage, as well as a global system for mobile texts and emails for communication with doctors in case of emergency are employed in our proposal. RESULTS: Our implemented system favors remote areas and isolated critical patients. This system utilizes an intelligent algorithm that employs an ECG signal pre-processed by moving through six digital filters. Then, based on the processed results, features are computed and assessed. The intelligent fuzzy system can make an autonomous diagnosis and has enough information to avoid human intervention. The algorithm is trained using ECG data from the MIT-BIH database and achieves high accuracy. In real-time validation, the fuzzy algorithm obtained almost 100% accuracy for all experiments. CONCLUSION: Our intelligent system can be helpful in many situations, but it is particularly beneficial for isolated COVID-19 patients who have critical heart arrhythmia and must receive intensive care.


Asunto(s)
COVID-19 , Internet de las Cosas , Humanos , Lógica Difusa , Inteligencia Artificial , COVID-19/diagnóstico , Pandemias , Arritmias Cardíacas/diagnóstico , Internet , Prueba de COVID-19
5.
Mathematics ; 10(16):2911, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-2023880

RESUMEN

Determining success factors for managing supply chains is a relevant aspect for companies. Then, modeling the relationship between inventory cost savings and supply chain success factors is a route for stating such a determination. This is particularly important in pharmacies and food nutrition services (FNS), where the advances made on this topic are still scarce. In this article, we propose and formulate a robust compromise (RoCo) multi-criteria model based on non-linear programming and time-dependent demand. The novelty of our proposal is in defining a score that allows us to measure the mentioned success factors in a simple way, in meeting together all three elements (RoCo multi-criteria, non-linear programming, and time-dependent demand) to state a new model, and in applying it to pharmacies and FNS. This model relates inventory cost savings for pharmacy/FNS and success factors across their supply chains. Savings of inventory costs are predicted by lot sizes to be purchased and computed by comparing optimal and true inventory costs. We utilize a system that records the movements and costs of products to collect the data. Factors, such as purchasing organization, economies of scale, and synchronized supply, are assumed using the purchase system, with these factors ranked on a Likert scale. We consider multilevel relationships between savings obtained for 79 pharmacy/FNS products, and success factor scores according to these products. To deal with the endogeneity bias of the relationships proposed, internal instrumental variables are employed by utilizing generalized statistical moments. Among our main conclusions, we state that the greatest cost savings obtained from inventory models are directly associated with low-success supply chain factors. In this association, the success factors operate as endogenous variables, with respect to inventory cost savings, given the simultaneity of their relationship with cost savings when inventory decision-making.

6.
Symmetry ; 14(7):1436, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1939004

RESUMEN

In this paper, we study a type of disease that unknowingly spreads for a long time, but by default, spreads only to a minimal population. This disease is not usually fatal and often goes unnoticed. We propose and derive a novel epidemic mathematical model to describe such a disease, utilizing a fractional differential system under the Atangana–Baleanu–Caputo derivative. This model deals with the transmission between susceptible, exposed, infected, and recovered classes. After formulating the model, equilibrium points as well as stability and feasibility analyses are stated. Then, we present results concerning the existence of positivity in the solutions and a sensitivity analysis. Consequently, computational experiments are conducted and discussed via proper criteria. From our experimental results, we find that the loss and regain of immunity result in the gain and loss of infections. Epidemic models can be linked to symmetry and asymmetry from distinct points of view. By using our novel approach, much research may be expected in epidemiology and other areas, particularly concerning COVID-19, to state how immunity develops after being infected by this virus.

7.
Mathematics ; 10(11):1825, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1869695

RESUMEN

Governments must consider different issues when deciding on the location of healthcare centers. In addition to the costs of opening such centers, three further elements should be addressed: accessibility, demand, and equity. Such locations must be chosen to meet the corresponding demand, so that they guarantee a socially equitable distribution, and to ensure that they are accessible to a sufficient degree. The location of the centers must be chosen from a set of possible facilities to guarantee certain minimum standards for the operational viability of the centers. Since the set of potential locations does not necessarily cover the demand of all geographical zones, the efficiency criterion must be maximized. However, the efficient distribution of resources does not necessarily meet the equity criterion. Thus, decision-makers must consider the trade-off between these two criteria: efficiency and equity. The described problem corresponds to the challenge that governments face in seeking to minimize the impact of the pandemic on citizens, where healthcare centers may be either public hospitals that care for COVID-19 patients or vaccination points. In this paper, we focus on the problem of a zone-divided region requiring the localization of healthcare centers. We propose a non-linear programming model to solve this problem based on a coverage formula using the Gini index to measure equity and accessibility. Then, we consider an approach using epsilon constraints that makes this problem solvable with mixed integer linear computations at each iteration. A simulation algorithm is also considered to generate problem instances, while computational experiments are carried out to show the potential use of the proposed mathematical programming model. The results show that the spatial distribution influences the coverage level of the healthcare system. Nevertheless, this distribution does not reduce inequity at accessible healthcare centers, as the distribution of the supply of health centers must be incorporated into the decision-making process.

8.
Signa Vitae ; 18(3):18-32, 2022.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1856565

RESUMEN

The COVID-19 pandemic is one of the worst public health crises in Brazil and the world that has ever been faced. One of the main challenges that the healthcare systems have when decision-making is that the protocols tested in other epidemics do not guarantee success in controlling the spread of COVID-19, given its complexity. In this context, an effective response to guide the competent authorities in adopting public policies to fight COVID-19 depends on thoughtful analysis and effective data visualization, ideally based on different data sources. In this paper, we discuss and provide tools that can be helpful using data analytics to respond to the COVID-19 outbreak in Recife, Brazil. We use exploratory data analysis and inferential study to determine the trend changes in COVID-19 cases and their effective or instantaneous reproduction numbers. According to the data obtained of confirmed COVID-19 cases disaggregated at a regional level in this zone, we note a heterogeneous spread in most megaregions in Recife, Brazil. When incorporating quarantines decreed, effectiveness is detected in the regions. Our results indicate that the measures have effectively curbed the spread of the disease in Recife, Brazil. However, other factors can cause the effective reproduction number to not be within the expected ranges, which must be further studied. [ FROM AUTHOR] Copyright of Signa Vitae is the property of Pharmamed Mado Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

9.
Comput Methods Programs Biomed ; 221: 106816, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1803790

RESUMEN

Quantile regression allows us to estimate the relationship between covariates and any quantile of the response variable rather than the mean. Recently, several statistical distributions have been considered for quantile modeling. The objective of this study is to provide a new computational package, two biomedical applications, one of them with COVID-19 data, and an up-to-date overview of parametric quantile regression. A fully parametric quantile regression is formulated by first parameterizing the baseline distribution in terms of a quantile. Then, we introduce a regression-based functional form through a link function. The density, distribution, and quantile functions, as well as the main properties of each distribution, are presented. We consider 18 distributions related to normal and non-normal settings for quantile modeling of continuous responses on the unit interval, four distributions for continuous response, and one distribution for discrete response. We implement an R package that includes estimation and model checking, density, distribution, and quantile functions, as well as random number generators, for distributions using quantile regression in both location and shape parameters. In summary, a number of studies have recently appeared applying parametric quantile regression as an alternative to the distribution-free quantile regression proposed in the literature. We have reviewed a wide body of parametric quantile regression models, developed an R package which allows us, in a simple way, to fit a variety of distributions, and applied these models to two examples with biomedical real-world data from Brazil and COVID-19 data from US for illustrative purposes. Parametric and non-parametric quantile regressions are compared with these two data sets.


Asunto(s)
COVID-19 , Modelos Estadísticos , Brasil , COVID-19/epidemiología , Humanos
10.
Signa Vitae ; 18(2):19-30, 2022.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1761516

RESUMEN

The emergence of COVID-19 so far and in the immediate future has brought significant uncertainties that negatively impact institutions and individuals in developing and planning their activities worldwide. The uncertainty of the effectiveness of vaccines has forced the authorities to adopt different protocols, the most relevant of which is the isolation of people through quarantine to avoid contagion, drastically affecting our way of life. For this reason, it is crucial to evaluate the effectiveness of quarantines. In this paper, we analyze the spread of the disease in Chile according to the quarantines decreed by the sanitary authority. An inferential study is used to estimate the trend changes in COVID-19 cases and their basic and instantaneous reproduction numbers, which allows us to evaluate the decreed measures and establish vaccination policies. According to the data obtained until 03 March 2021 of confirmed COVID-19 cases disaggregated at a regional level in Chile, we observe a heterogeneous spread in most Chilean regions. When incorporating the dynamic quarantines decreed, effectiveness is detected in most regions, except in a few of them. Our results indicate that we are unable to identify the measures in the step-by-step protocols partly responsible for non-compliance with quarantines. However, our specific findings that can be extrapolated to daily practice and enlighten the ways of other countries are as follows. On the one hand, a measure that has been effective in curbing the spread of the disease is the strict early quarantine as detected in some Chilean regions. Therefore, indexes are needed to measure the mobility of citizens. On the other hand, as time passes without stopping infections, quarantines lose effectiveness even if the estimated instantaneous reproduction number is negligible and stable. In addition, other factors can cause this number to not be within the expected ranges, which must be further studied. Also, we have estimated the basic reproduction number whose value confirms the suitability of the pandemic declaration. [ FROM AUTHOR] Copyright of Signa Vitae is the property of Pharmamed Mado Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

11.
Chemometr Intell Lab Syst ; 224: 104535, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1739603

RESUMEN

COVID-19 disease causes serious respiratory illnesses. Therefore, accurate identification of the viral infection cycle plays a key role in designing appropriate vaccines. The risk of this disease depends on proteins that interact with human receptors. In this paper, we formulate a novel model for COVID-19 named "amino acid encoding based prediction" (AAPred). This model is accurate, classifies the various coronavirus types, and distinguishes SARS-CoV-2 from other coronaviruses. With the AAPred model, we reduce the number of features to enhance its performance by selecting the most important ones employing statistical criteria. The protein sequence of SARS-CoV-2 for understanding the viral infection cycle is analyzed. Six machine learning classifiers related to decision trees, k-nearest neighbors, random forest, support vector machine, bagging ensemble, and gradient boosting are used to evaluate the model in terms of accuracy, precision, sensitivity, and specificity. We implement the obtained results computationally and apply them to real data from the National Genomics Data Center. The experimental results report that the AAPred model reduces the features to seven of them. The average accuracy of the 10-fold cross-validation is 98.69%, precision is 98.72%, sensitivity is 96.81%, and specificity is 97.72%. The features are selected utilizing information gain and classified with random forest. The proposed model predicts the type of Coronavirus and reduces the number of extracted features. We identify that SARS-CoV-2 has similar physicochemical characteristics in some regions of SARS-CoV. Also, we report that SARS-CoV-2 has similar infection cycles and sequences in some regions of SARS CoV indicating the affectedness of vaccines on SARS-CoV-2. A comparison with deep learning shows similar results with our method.

12.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1430954

RESUMEN

In a real-world situation produced under COVID-19 scenarios, predicting cryptocurrency returns accurately can be challenging. Such a prediction may be helpful to the daily economic and financial market. Unlike forecasting the cryptocurrency returns, we propose a new approach to predict whether the return classification would be in the first, second, third quartile, or any quantile of the gold price the next day. In this paper, we employ the support vector machine (SVM) algorithm for exploring the predictability of financial returns for the six major digital currencies selected from the list of top ten cryptocurrencies based on data collected through sensors. These currencies are Binance Coin, Bitcoin, Cardano, Dogecoin, Ethereum, and Ripple. Our study considers the pre-COVID-19 and ongoing COVID-19 periods. An algorithm that allows updated data analysis, based on the use of a sensor in the database, is also proposed. The results show strong evidence that the SVM is a robust technique for devising profitable trading strategies and can provide accurate results before and during the current pandemic. Our findings may be helpful for different stakeholders in understanding the cryptocurrency dynamics and in making better investment decisions, especially under adverse conditions and during times of uncertain environments such as in the COVID-19 pandemic.


Asunto(s)
COVID-19 , Máquina de Vectores de Soporte , Comercio , Oro , Humanos , Pandemias , SARS-CoV-2
13.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1348687

RESUMEN

Healthcare service centers must be sited in strategic locations that meet the immediate needs of patients. The current situation due to the COVID-19 pandemic makes this problem particularly relevant. Assume that each center corresponds to an assigned place for vaccination and that each center uses one or more vaccine brands/laboratories. Then, each patient could choose a center instead of another, because she/he may prefer the vaccine from a more reliable laboratory. This defines an order of preference that might depend on each patient who may not want to be vaccinated in a center where there are only her/his non-preferred vaccine brands. In countries where the vaccination process is considered successful, the order assigned by each patient to the vaccination centers is defined by incentives that local governments give to their population. These same incentives for foreign citizens are seen as a strategic decision to generate income from tourism. The simple plant/center location problem (SPLP) is a combinatorial approach that has been extensively studied. However, a less-known natural extension of it with order (SPLPO) has not been explored in the same depth. In this case, the size of the instances that can be solved is limited. The SPLPO considers an order of preference that patients have over a set of facilities to meet their demands. This order adds a new set of constraints in its formulation that increases the complexity of the problem to obtain an optimal solution. In this paper, we propose a new two-stage stochastic formulation for the SPLPO (2S-SPLPO) that mimics the mentioned pandemic situation, where the order of preference is treated as a random vector. We carry out computational experiments on simulated 2S-SPLPO instances to evaluate the performance of the new proposal. We apply an algorithm based on Lagrangian relaxation that has been shown to be efficient for large instances of the SPLPO. A potential application of this new algorithm to COVID-19 vaccination is discussed and explored based on sensor-related data. Two further algorithms are proposed to store the patient's records in a data warehouse and generate 2S-SPLPO instances using sensors.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Algoritmos , Femenino , Humanos , Masculino , Pandemias , SARS-CoV-2 , Vacunación
14.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1335180

RESUMEN

Governments have been challenged to provide timely medical care to face the COVID-19 pandemic. Under this pandemic, the demand for pharmaceutical products has changed significantly. Some of these products are in high demand, while, for others, their demand falls sharply. These changes in the random demand patterns are connected with changes in the skewness (asymmetry) and kurtosis of their data distribution. Such changes are critical to determining optimal lots and inventory costs. The lot-size model helps to make decisions based on probabilistic demand when calculating the optimal costs of supply using two-stage stochastic programming. The objective of this study is to evaluate how the skewness and kurtosis of the distribution of demand data, collected through sensors, affect the modeling of inventories of hospital pharmacy products helpful to treat COVID-19. The use of stochastic programming allows us to obtain results under demand uncertainty that are closer to reality. We carry out a simulation study to evaluate the performance of our methodology under different demand scenarios with diverse degrees of skewness and kurtosis. A case study in the field of hospital pharmacy with sensor-related COVID-19 data is also provided. An algorithm that permits us to use sensors when submitting requests for supplying pharmaceutical products in the hospital treatment of COVID-19 is designed. We show that the coefficients of skewness and kurtosis impact the total costs of inventory that involve order, purchase, holding, and shortage. We conclude that the asymmetry and kurtosis of the demand statistical distribution do not seem to affect the first-stage lot-size decisions. However, demand patterns with high positive skewness are related to significant increases in expected inventories on hand and shortage, increasing the costs of second-stage decisions. Thus, demand distributions that are highly asymmetrical to the right and leptokurtic favor high total costs in probabilistic lot-size systems.


Asunto(s)
COVID-19 , Servicio de Farmacia en Hospital , Humanos , Pandemias , SARS-CoV-2 , Incertidumbre
15.
Mathematics ; 9(13):1558, 2021.
Artículo en Inglés | MDPI | ID: covidwho-1295877

RESUMEN

COVID-19 infections have plagued the world and led to deaths with a heavy pneumonia manifestation. The main objective of this investigation is to evaluate the performance of certain economies during the crisis derived from the COVID-19 pandemic. The gross domestic product (GDP) and global health security index (GHSI) of the countries belonging–or not–to the Organization for Economic Cooperation and Development (OECD) are considered. In this paper, statistical models are formulated to study this performance. The models’ specifications include, as the response variable, the GDP variation/growth percentage in 2020, and as the covariates: the COVID-19 disease rate from its start in March 2020 until 31 December 2020;the GHSI of 2019;the countries’ risk by default spreads from July 2019 to May 2020;belongingness or not to the OECD;and the GDP per capita in 2020. We test the heteroscedasticity phenomenon present in the modeling. The variable “COVID-19 cases per million inhabitants” is statistically significant, showing its impact on each country’s economy through the GDP variation. Therefore, we report that COVID-19 cases affect domestic economies, but that OECD membership and other risk factors are also relevant.

16.
Sensors (Basel) ; 21(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1270105

RESUMEN

In this paper, we group South American countries based on the number of infected cases and deaths due to COVID-19. The countries considered are: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay, and Venezuela. The data used are collected from a database of Johns Hopkins University, an institution that is dedicated to sensing and monitoring the evolution of the COVID-19 pandemic. A statistical analysis, based on principal components with modern and recent techniques, is conducted. Initially, utilizing the correlation matrix, standard components and varimax rotations are calculated. Then, by using disjoint components and functional components, the countries are grouped. An algorithm that allows us to keep the principal component analysis updated with a sensor in the data warehouse is designed. As reported in the conclusions, this grouping changes depending on the number of components considered, the type of principal component (standard, disjoint or functional) and the variable to be considered (infected cases or deaths). The results obtained are compared to the k-means technique. The COVID-19 cases and their deaths vary in the different countries due to diverse reasons, as reported in the conclusions.


Asunto(s)
COVID-19 , Pandemias , Argentina , Brasil , Chile , Colombia , Ecuador , Humanos , Perú , Análisis de Componente Principal , SARS-CoV-2 , Uruguay , Venezuela
17.
J Appl Stat ; 49(5): 1323-1347, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1201104

RESUMEN

In the present study, we provide a motivating example with a financial application under COVID-19 pandemic to investigate autoregressive (AR) modeling and its diagnostics based on asymmetric distributions. The objectives of this work are: (i) to formulate asymmetric AR models and their estimation and diagnostics; (ii) to assess the performance of the parameters estimators and of the local influence technique for these models; and (iii) to provide a tool to show how data following an asymmetric distribution under an AR structure should be analyzed. We take the advantages of the stochastic representation of the skew-normal distribution to estimate the parameters of the corresponding AR model efficiently with the expectation-maximization algorithm. Diagnostic analytics are conducted by using the local influence technique with four perturbation schemes. By employing Monte Carlo simulations, we evaluate the statistical behavior of the corresponding estimators and of the local influence technique. An illustration with financial data updated until 2020, analyzed using the methodology introduced in the present work, is presented as an example of effective applications, from where it is possible to explain atypical cases from the COVID-19 pandemic.

18.
Entropy (Basel) ; 23(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1024540

RESUMEN

In this research, statistical models are formulated to study the effect of the health crisis arising from COVID-19 in global markets. Breakpoints in the price series of stock indexes are considered. Such indexes are used as an approximation of the stock markets in different countries, taking into account that they are indicative of these markets because of their composition. The main results obtained in this investigation highlight that countries with better institutional and economic conditions are less affected by the pandemic. In addition, the effect of the health index in the models is associated with their non-significant parameters. This is due to that the health index used in the modeling would not determine the different capacities of the countries analyzed to respond efficiently to the pandemic effect. Therefore, the contagion is the preponderant factor when analyzing the structural breakdown that occurred in the world economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA